束は英語では lattice と呼ばれる。岩波の数学辞典では, lattice-ordered set とも呼ばれている。凸多面体など, 組み合せ論的な構造を表わすときによく使われる。 また, 位相の一般化である locale の定義にも必要である。

組み合せ論で扱うものは基本的に有限集合なので, 任意の二元についての \(\sup \) と \(\inf \) の存在で十分である。しかし, 位相の成す lattice のような場合は, 任意の部分集合の \(\sup \) や \(\inf \) を考える必要があるため complete lattice の概念が必要になる。

  • complete lattice

Complete lattice の圏の morphism を join を保つものに制限した圏を sup-lattice の圏という。

  • sup-lattice

Sup-lattice の圏では, Abel群の tensor product を真似て tensor product が定義でき, monoidal category になる。

  • sup-lattice の圏の monoidal structure

Quantale は, この monoidal structure の下での monoid object である。

代数的トポロジーに関係したものとしては, 安定ホモトピー論に登場する Bousfield lattice がある。

束に \(\Rightarrow \) を追加したものを Heyting algebra という。

  • Heyting algebra

Stevenson [Ste] は complete Heyting algebra から tensor triangluated category を構成することを考えている。その Bousfield lattice が元の Heyting algebra のブール代数化になっているようである。

代数幾何学では, 可換環の (素) イデアルの集合が基本的であるが, その性質を抽象した ideal lattice という概念を, Buan と Krause と Solberg が [BKS07] で考えている。可換環の \(\mathrm{Spec}\) の一般化が定義でき, 興味深い。

  • ideal lattice
  • ideal lattice の prime ideal spectrum

References

[BKS07]

Aslak Bakke Buan, Henning Krause, and Øyvind Solberg. “Support varieties: an ideal approach”. In: Homology, Homotopy Appl. 9.1 (2007), pp. 45–74. arXiv: math/0508379. url: http://projecteuclid.org/euclid.hha/1175791087.

[Ste]

Greg Stevenson. Complete Boolean algebras are Bousfield lattices. arXiv: 1707.06007.