Monoid の一般化

Monoid は様々な見方ができるため, 数多くの一般化が考えられている。 まず, 群から逆元の存在の条件を外したものと考えると, 単位元の条件を外した semigroup, 更に結合法則を外した magma が考えられる。

Dabkowski ら [Dab+] は, magma という用語は Serre の [Ser06] や Bourbaki などで使われている, と言っている。

ホモトピー論的に associativity を弱めたものとして, \(A_{\infty }\)-space がある。

部分的にしか積が定義されていない monoid は, 例えば, Shimakawa の [Shi01] などで調べられている。 私も, [Tam13a; Tam13b] で使った。

  • partial monoid

Partial monoid は, \(C^*\)-algebra に関連して, Burgstaller [Bur] などによっても調べられている。そこでは, semimultiplicative set と呼ばれているが。[Bur09] では, partial monoid の \(C^*-algebra\) や equivariant \(KK\)-theory が考えられている。

他にも, 様々な場面で異なる名前で登場する。例えば, Bessis の [Bes03] では pre-monoid という名前で呼ばれている。

更に弱めて, 積が部分的にしか定義されていない magma を, Jonsson [Jon] は partial magma と呼んでいる。関連して semigroupoid や poloid といった構造も調べている。

  • partial magma
  • semigroupoid
  • poloid

可算個の元を一度に足す操作を持つものとして, Janelidze と Street [JS] は, series magma や series monoid という構造を導入している。

  • series magma
  • series monoid

Monoid の categorification の1つが monoidal category であるが, monoidal category では monoid object を定義することができる。 このように大きな構造の中によく似た小さな構造が定義されることを microcosm principle と呼ぶようである。

2つの積 (binary operation) を持つ “double 〜” という変種もある。

  • double magma [Edm]
  • double semigroup [Koc]
  • double inverse semigroup [DP]

References

[Bes03]

David Bessis. “The dual braid monoid”. In: Ann. Sci. École Norm. Sup. (4) 36.5 (2003), pp. 647–683. arXiv: math/0101158. url: http://dx.doi.org/10.1016/j.ansens.2003.01.001.

[Bur]

Bernhard Burgstaller. A descent homomorphism for semimultiplicative sets. arXiv: 1111.4160.

[Bur09]

Bernhard Burgstaller. “Equivariant \(KK\)-theory for semimultiplicative sets”. In: New York J. Math. 15 (2009), pp. 505–531. url: http://nyjm.albany.edu:8000/j/2009/15_505.html.

[Dab+]

Malgorzata A. Dabkowska, Mieczyslaw K. Dabkowski, Valentina S. Harizanov, Jozef H. Przytycki, and Michael A. Veve. Compactness of the space of left orders. arXiv: math/0606264.

[DP]

Darien DeWolf and Dorette Pronk. On Double Inverse Semigroups. arXiv: 1501.03690.

[Edm]

Charles C. Edmunds. Constructing Double Magma with Commutation Operations. arXiv: 1308.2691.

[Jon]

Dan Jonsson. Poloids from the Points of View of Partial Transformations and Category Theory. arXiv: 1710.04634.

[JS]

George Janelidze and Ross Street. Real sets. arXiv: 1704.08787.

[Koc]

Joachim Kock. Note on commutativity in double semigroups and two-fold monoidal categories. arXiv: math/0608452.

[Ser06]

Jean-Pierre Serre. Lie algebras and Lie groups. Vol. 1500. Lecture Notes in Mathematics. 1964 lectures given at Harvard University, Corrected fifth printing of the second (1992) edition. Springer-Verlag, Berlin, 2006, pp. viii+168. isbn: 978-3-540-55008-2; 3-540-55008-9.

[Shi01]

Kazuhisa Shimakawa. “Configuration spaces with partially summable labels and homology theories”. In: Math. J. Okayama Univ. 43 (2001), pp. 43–72.

[Tam13a]

Dai Tamaki. “Twisting Segal’s \(K\)-homology theory”. In: Noncommutative geometry and physics. 3. Vol. 1. Keio COE Lect. Ser. Math. Sci. World Sci. Publ., Hackensack, NJ, 2013, pp. 197–235. url: http://dx.doi.org/10.1142/9789814425018_0007.

[Tam13b]

Dai Tamaki. “Two-sided bar constructions for partial monoids and applications to \(K\)-homology theory”. In: Noncommutative geometry and physics. 3. Vol. 1. Keio COE Lect. Ser. Math. Sci. World Sci. Publ., Hackensack, NJ, 2013, pp. 177–195. url: http://dx.doi.org/10.1142/9789814425018_0006.