Perverse Sheaves

Goresky と MacPherson は, intersection cohomology を sheaf (の hyper)cohomology として記述するために, perverse sheaf という概念を導入した。

Kirwan の本 [KW06] のような intersectoin cohomology の解説にも, もちろん書かれているが, とりあえず de Cataldo と Migliorini の解説 [CM09] を読んでみるのもいいかもしれない。 Rietsch の [Rie04] もある。 最近, Goresky による lecture note [Gor] も公開された。

Perverse sheaf は, それ自体重要な情報を持っている。例えば Beilinson と Bernstein の有名な結果 [BB81] は, flag variety \(G/P\) 上の perverse sheaf の圏と \(\mathfrak{g}\) の或る種の表現の成す圏の同値を与える。

Braden は [Bra02]で, Grassmann 多様体上の Schubert stratification の場合の perverse sheaf の圏を quiver を用いて表示す ることに成功している。Kapranov と Schechtman [KS16] によると, perverse sheaf の成す圏のこの手の記述としては, 他には normal crossing の場合 [GGM85] と正方行列の成す空間上の rank filtration の場合 [BG99] ぐらいのようである。 Kapranov と Schechtman は complexified hyperplane arrangement の場合を考えている。

Langlands duality は, loop Grassmannian 上の perverse sheaf の成す tensor category によりみることもできるらしい。 [Gin; MV07] など。

Kashiwara らは, [Kas+06] で perverse sheaf の microlocalization を構成している。

References

[BB81]

Alexandre Beı̆linson and Joseph Bernstein. “Localisation de \(g\)-modules”. In: C. R. Acad. Sci. Paris Sér. I Math. 292.1 (1981), pp. 15–18.

[BG99]

Tom Braden and Mikhail Grinberg. “Perverse sheaves on rank stratifications”. In: Duke Math. J. 96.2 (1999), pp. 317–362. url: https://doi.org/10.1215/S0012-7094-99-09609-6.

[Bra02]

Tom Braden. “Perverse sheaves on Grassmannians”. In: Canad. J. Math. 54.3 (2002), pp. 493–532. arXiv: math/9907152. url: http://dx.doi.org/10.4153/CJM-2002-017-6.

[CM09]

Mark Andrea A. de Cataldo and Luca Migliorini. “The decomposition theorem, perverse sheaves and the topology of algebraic maps”. In: Bull. Amer. Math. Soc. (N.S.) 46.4 (2009), pp. 535–633. arXiv: 0712.0349. url: http://dx.doi.org/10.1090/S0273-0979-09-01260-9.

[GGM85]

A. Galligo, M. Granger, and Ph. Maisonobe. “\(\cD \)-modules et faisceaux pervers dont le support singulier est un croisement normal. II”. In: 130. Differential systems and singularities (Luminy, 1983). 1985, pp. 240–259.

[Gin]

Victor Ginzburg. Perverse sheaves on a Loop group and Langlands’ duality. arXiv: alg-geom/9511007.

[Gor]

Mark Goresky. Lecture notes on sheaves and perverse sheaves. arXiv: 2105.12045.

[Kas+06]

M. Kashiwara, P. Schapira, F. Ivorra, and I. Waschkies. “Microlocalization of ind-sheaves”. In: Studies in Lie theory. Vol. 243. Progr. Math. Boston, MA: Birkhäuser Boston, 2006, pp. 171–221. arXiv: math/0407371. url: http://dx.doi.org/10.1007/0-8176-4478-4_9.

[KS16]

Mikhail Kapranov and Vadim Schechtman. “Perverse sheaves over real hyperplane arrangements”. In: Ann. of Math. (2) 183.2 (2016), pp. 619–679. arXiv: 1403.5800. url: https://doi.org/10.4007/annals.2016.183.2.4.

[KW06]

Frances Kirwan and Jonathan Woolf. An introduction to intersection homology theory. Second. Chapman & Hall/CRC, Boca Raton, FL, 2006, p. xiv 229. isbn: 978-1-58488-184-1; 1-58488-184-4.

[MV07]

I. Mirković and K. Vilonen. “Geometric Langlands duality and representations of algebraic groups over commutative rings”. In: Ann. of Math. (2) 166.1 (2007), pp. 95–143. arXiv: math/0401222. url: http://dx.doi.org/10.4007/annals.2007.166.95.

[Rie04]

Konstanze Rietsch. “An introduction to perverse sheaves”. In: Representations of finite dimensional algebras and related topics in Lie theory and geometry. Vol. 40. Fields Inst. Commun. Providence, RI: Amer. Math. Soc., 2004, pp. 391–429. arXiv: math/0307349.