Modular Forms

楕円コホモロジーの登場以来, 代数的トポロジーを勉強するためにも modular form と 楕円曲線は「一般教養」となった。 楕円コホモロジーとも関係あるが, 興味深い現象として monstrous moonshine がある。

この MathOverflow の質問は, modular form の起源について聞いたものであるが, KConrad による回答によると 1800年前後に Gauss の仕事の中で登場したのが最初の例のようである。

まずは, 複素平面の上半平面への\(\SL _2(\R )\)の作用 (一次分数変換) が必要になる。

  • 一次分数変換

そして上半平面上の関数で, この作用に関し“良い性質”を持つものを考えるわけである。

Modular form や楕円曲線に関しては, 数多くの文献がある。 簡潔に述べてあるものとして, かつて Rochester で学生だったときに, Ravenel 先生から Serre の本 [Ser73] を勧められたことがある。確かに手っ取り早く理解するにはいいかもしれない。

他に目にしたものを挙げると, 次のようになる:

  • Roy の歴史的な視点からの本 [Roy17]
  • Deligne の [BK75] の論文
  • Henri Cohen の lecture notes [Coh19]
  • Diamond と Shurman の [DS05]
  • Milne の course note [Mil17]
  • 4人による lecture notes [Bru+08]
  • Apostol の本 [Apo90]
  • Hida の本 [Hid93]
  • Iwaniec の本 [Iwa97]
  • Knapp の本 [Kna92]
  • Knopp の本 [Kno70]
  • Lang の本 [Lan95]
  • Miyake の本 [Miy06]
  • Ogg の本 [Ogg69]
  • Koblitz の本 [Kob93]
  • Rankin の本 [Ran77]
  • Schoeneberg の本 [Sch74]
  • Shimura の本 [Shi94]
  • Romik の本 [Rom23] の Chapter 5

4人による lecture notes [Bru+08] の中の Zagier による解説では, 応用として sums of squares の問題が取り上げられている。

基本的な例としては, Eisenstein series や Dedekind の \(\eta \)-function を挙げるべきだろうか。

一般化や変種も色々考えられている。

References

[Apo90]

Tom M. Apostol. Modular functions and Dirichlet series in number theory. Second. Vol. 41. Graduate Texts in Mathematics. Springer-Verlag, New York, 1990, pp. x+204. isbn: 0-387-97127-0. url: https://doi.org/10.1007/978-1-4612-0999-7.

[BG07]

Peter Bantay and Terry Gannon. “Vector-valued modular functions for the modular group and the hypergeometric equation”. In: Commun. Number Theory Phys. 1.4 (2007), pp. 651–680. arXiv: 0705.2467. url: https://doi.org/10.4310/CNTP.2007.v1.n4.a2.

[BK75]

B. J. Birch and W. Kuyk, eds. Modular functions of one variable. IV. Lecture Notes in Mathematics, Vol. 476. Springer-Verlag, Berlin-New York, 1975, pp. iv+151.

[Bru+08]

Jan Hendrik Bruinier, Gerard van der Geer, Günter Harder, and Don Zagier. The 1-2-3 of modular forms. Universitext. Lectures from the Summer School on Modular Forms and their Applications held in Nordfjordeid, June 2004, Edited by Kristian Ranestad. Springer-Verlag, Berlin, 2008, pp. x+266. isbn: 978-3-540-74117-6. url: https://doi.org/10.1007/978-3-540-74119-0.

[Coh19]

Henri Cohen. “An introduction to modular forms”. In: Notes from the International Autumn School on Computational Number Theory. Tutor. Sch. Workshops Math. Sci. Birkhäuser/Springer, Cham, 2019, pp. 3–62. arXiv: 1809.10907.

[DS05]

Fred Diamond and Jerry Shurman. A first course in modular forms. Vol. 228. Graduate Texts in Mathematics. Springer-Verlag, New York, 2005, pp. xvi+436. isbn: 0-387-23229-X.

[Hid93]

Haruzo Hida. Elementary theory of \(L\)-functions and Eisenstein series. Vol. 26. London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 1993, pp. xii+386. isbn: 0-521-43411-4; 0-521-43569-2. url: https://doi.org/10.1017/CBO9780511623691.

[Iwa97]

Henryk Iwaniec. Topics in classical automorphic forms. Vol. 17. Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 1997, pp. xii+259. isbn: 0-8218-0777-3. url: https://doi.org/10.1090/gsm/017.

[JS21]

Matthew Just and Robert Schneider. “Partition Eisenstein series and semi-modular forms”. In: Res. Number Theory 7.4 (2021), Paper No. 61, 8. arXiv: 2103.06239. url: https://doi.org/10.1007/s40993-021-00286-6.

[Kna92]

Anthony W. Knapp. Elliptic curves. Vol. 40. Mathematical Notes. Princeton University Press, Princeton, NJ, 1992, pp. xvi+427. isbn: 0-691-08559-5.

[Kno70]

Marvin I. Knopp. Modular functions in analytic number theory. Markham Publishing Co., Chicago, Ill., 1970, pp. x+150.

[Kob93]

Neal Koblitz. Introduction to elliptic curves and modular forms. Second. Vol. 97. Graduate Texts in Mathematics. Springer-Verlag, New York, 1993, pp. x+248. isbn: 0-387-97966-2. url: http://dx.doi.org/10.1007/978-1-4612-0909-6.

[Lan95]

Serge Lang. Introduction to modular forms. Vol. 222. Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. With appendixes by D. Zagier and Walter Feit, Corrected reprint of the 1976 original. Springer-Verlag, Berlin, 1995, pp. x+261. isbn: 3-540-07833-9.

[Mil17]

James S. Milne. Modular Functions and Modular Forms (Elliptic Modular Curves). Version 1.31. Mar. 2017. url: https://www.jmilne.org/math/CourseNotes/MF.pdf.

[Miy06]

Toshitsune Miyake. Modular forms. English. Springer Monographs in Mathematics. Translated from the 1976 Japanese original by Yoshitaka Maeda. Springer-Verlag, Berlin, 2006, pp. x+335. isbn: 978-3-540-29592-1; 3-540-29592-5.

[Ogg69]

Andrew Ogg. Modular forms and Dirichlet series. W. A. Benjamin, Inc., New York-Amsterdam, 1969, xvi+173 pp. (not consecutively paged) paperbound.

[Ran77]

Robert A. Rankin. Modular forms and functions. Cambridge University Press, Cambridge-New York-Melbourne, 1977, pp. xiii+384. isbn: 0-521-21212-X.

[Rom23]

Dan Romik. Topics in complex analysis. De Gruyter Graduate. De Gruyter, Berlin, [2023] ©2023, pp. ix+295. isbn: 978-3-11-079678-0; 978-3-11-079681-0; 978-3-11-079688-9. url: https://doi.org/10.1515/9783110796810.

[Roy17]

Ranjan Roy. Elliptic and modular functions from Gauss to Dedekind to Hecke. Cambridge University Press, Cambridge, 2017, pp. xiii+475. isbn: 978-1-107-15938-9. url: https://doi.org/10.1017/9781316671504.

[Sch74]

Bruno Schoeneberg. Elliptic modular functions: an introduction. Die Grundlehren der mathematischen Wissenschaften, Band 203. Translated from the German by J. R. Smart and E. A. Schwandt. Springer-Verlag, New York-Heidelberg, 1974, pp. viii+233.

[Ser73]

J.-P. Serre. A course in arithmetic. Translated from the French, Graduate Texts in Mathematics, No. 7. New York: Springer-Verlag, 1973, pp. viii+115.

[Shi94]

Goro Shimura. Introduction to the arithmetic theory of automorphic functions. Vol. 11. Publications of the Mathematical Society of Japan. Reprint of the 1971 original, Kanô Memorial Lectures, 1. Princeton University Press, Princeton, NJ, 1994, pp. xiv+271. isbn: 0-691-08092-5.

[Zag08]

Don Zagier. “Elliptic modular forms and their applications”. In: The 1-2-3 of modular forms. Universitext. Springer, Berlin, 2008, pp. 1–103. url: https://doi.org/10.1007/978-3-540-74119-0_1.

[Zag10]

Don Zagier. “Quantum modular forms”. In: Quanta of maths. Vol. 11. Clay Math. Proc. Amer. Math. Soc., Providence, RI, 2010, pp. 659–675.