|   | 
      
      
      
	
	| 
	    
	    
	      | Polytopes from Posets |  
	      |    Poset から作られる多面体としては, まず Stanley [Sta86] により定義された chain polytope と order
polytope がある。その変種も色々定義されている。
 
chain polytope と order polytope
marked chain polytope と marked order polytope [ABS11]
chain-order polytope [Hib+19]
marked chain-order polytope [FF16]
enriched order polytope tol enriched chain polytope [OT21]
signed chain polytope と signed order polytope [BH]    他に目についたものを挙げると, 次のようになる。
      
order-chain polytope [HMT17]
marked order-chain polytope [FF16]
maximal chain polytope [Oda]
poset associahedron [Gal24]
linear order polytope [BKG99; CSS13; EY23]
partial order polytope [Fio03]
relative poset polytope [FM24] 
References         
 
[ABS11]   
Federico Ardila, Thomas Bliem, and Dido Salazar. “Gelfand-Tsetlin
polytopes             and             Feigin-Fourier-Littelmann-Vinberg
polytopes  as  marked  poset  polytopes”.  In:  J.  Combin.  Theory
Ser.  A  118.8  (2011),  pp. 2454–2462.  arXiv:  1008 . 2365.  url:
http://dx.doi.org/10.1016/j.jcta.2011.06.004.
[BH]      
Matthias Beck and Max Hlavacek. Signed Poset Polytopes. arXiv:
2311.04409.
                                                                  
                                                                  
[BKG99]  
G. Bolotashvili, M. Kovalev, and E. Girlich. “New facets of the linear
ordering
polytope”. In: SIAM J. Discrete Math. 12.3 (1999), pp. 326–336.
url: https://doi.org/10.1137/S0895480196300145.
[CSS13]   
Ilya Chevyrev, Dominic Searles, and Arkadii Slinko. “On the number
of facets of polytopes representing comparative probability orders”.
In:  Order  30.3  (2013),  pp. 749–761.  arXiv:  1103 . 3938.  url:
https://doi.org/10.1007/s11083-012-9274-0.
[EY23]    
Adolfo                                R.                                Escobedo
and Romena Yasmin. “Derivations of large classes of facet defining
inequalities of the weak order polytope using ranking structures”. In:
J. Comb. Optim. 46.3 (2023), Paper No. 19, 45. arXiv: 2008.03799.
url: https://doi.org/10.1007/s10878-023-01075-w.
[FF16]    
Xin Fang and Ghislain Fourier. “Marked chain-order polytopes”. In:
European J. Combin. 58 (2016), pp. 267–282. arXiv: 1508.02232.
url: https://doi.org/10.1016/j.ejc.2016.06.007.
[Fio03]    
Samuel Fiorini. “A combinatorial study of partial order polytopes”.
In:   European   J.   Combin.   24.2   (2003),   pp. 149–159.   url:
https://doi.org/10.1016/S0195-6698(03)00009-X.
[FM24]   
Evgeny            Feigin            and            Igor            Makhlin.
“Relative poset polytopes and semitoric degenerations”. In: Selecta
Math. (N.S.) 30.3 (2024), Paper No. 48. arXiv: 2112.05894. url:
https://doi.org/10.1007/s00029-024-00935-5.
[Gal24]   
Pavel               Galashin.               “\(P\)-associahedra”.               In:
Selecta Math. (N.S.) 30.1 (2024), Paper No. 6. arXiv: 2110.07257.
url: https://doi.org/10.1007/s00029-023-00896-1.
[Hib+19]  
                                                                  
                                                                  
Takayuki  Hibi,  Nan  Li,  Teresa  Xueshan  Li,  Li  Li  Mu,  and
Akiyoshi   Tsuchiya.   “Order-chain   polytopes”.   In:   Ars   Math.
Contemp.  16.2  (2019),  pp. 299–317.  arXiv:  1504 . 01706.  url:
https://doi.org/10.26493/1855-3974.1164.2f7.
[HMT17]  
Takayuki   Hibi,   Kazunori   Matsuda,   and   Akiyoshi   Tsuchiya.
“Quadratic Gröbner bases arising from partially ordered sets”. In:
Math. Scand. 121.1 (2017), pp. 19–25. arXiv: 1506.00802. url:
https://doi.org/10.7146/math.scand.a-26246.
[Oda]     
Shinsuke Odagiri. Faces of maximal chain polytopes. arXiv: 2108.
11721.
[OT21]    
Hidefumi Ohsugi and Akiyoshi Tsuchiya. “Enriched order polytopes
and                                  enriched                                  Hibi
rings”. In: Eur. J. Math. 7.1 (2021), pp. 48–68. arXiv: 1903.00909.
url: https://doi.org/10.1007/s40879-020-00403-2.
[Sta86]    
Richard             P.             Stanley.             “Two             poset
polytopes”. In: Discrete Comput. Geom. 1.1 (1986), pp. 9–23. url:
http://dx.doi.org/10.1007/BF02187680. |  
	      
	     |